首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   8篇
  国内免费   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   5篇
  2010年   8篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   8篇
  1998年   4篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有165条查询结果,搜索用时 234 毫秒
61.
Red light and kinetin (10 µm) increased nitrite reductase(NIR) activity by 85 and 47% respectively in excised leavesof etiolated Zea mays. The stimulatory effect of kinetin decayedslower than that of red light. Indoleacetic acid (10 µm)had no effect on NIR activity. In the presence of abscisic acid(10 µm), the kinetin stimulated increase in NIR activitywas totally nullified, however, the red light irradiated plantsretained 20–25% increase in NIR activity over the darkcontrol. If ABA was given 2 h after kinetin treatment or redlight irradiation, it totally blocked kinetin stimulation asnoticed earlier, but red light stimulation was inhibited byonly 11%. Kinetin-treated and the red light irradiated leavesshowed 20–25% increase in nitrate accumulation, whichwas totally nullified by ABA. The experiments presented suggestan independent mode of signal transduction by kinetin and phytochromein stimulating NIR activity. (Received December 2, 1986; Accepted February 7, 1987)  相似文献   
62.
Physiology and Molecular Biology of Plants - We present here a tribute to Satish Chandra Maheshwari (known to many as SCM, or simply Satish), one of the greatest plant biologists of our time. He...  相似文献   
63.
Nitrite reductase in the excised etiolated leaves of maize showedthe photoreversibility by red and far-red light. Five minutesof red light illumination lead to a 130% increase in the enzymeactivity which was reversed by far-red light. The kinetics ofnitrite reductase activity under continuous far-red light showeda lag phase of 1 hr. (Received January 17, 1981; Accepted February 20, 1981)  相似文献   
64.
Nuclear-encoded genes for proteins of the photosynthetic maschinery represent a particular subset of genes. Their expression is cooperatively stimulated by discrete factors including the developmental stage of plastids and light. We have analyzed in transgenic tobacco the plastid- and light-dependent expression of a series of 5′ promoter deletions of various nuclear genes from spinach, of fusions of defined promoter segments with the 90-bp 35S RNA CaMV minimal promoter, as well as with mutations in sequences with homologies to characterizedcis-elements, to address the question of whether the plastid signal and light operate via the same or differentcis-acting elements. In none of the 160 different transgenic lines (representing 32 promoter constructs from seven genes) analyzed, could significant differences be identified in the responses to the two regulatory pathways. The data are compatible with the idea that both signals control the expression of nuclear genes for plastid proteins via the samecis-acting elements.  相似文献   
65.
The Tn5-containing fragment from a non-nodulating mutant of Bradyrhizobium japonicum, strain ML142, was introduced into B. japonicum strain 61A101c by marker exchange to construct strain JS314. Strain JS314 failed to nodulate several soybean varieties tested. However, on a few varieties nodulelike structures were induced to a frequency of 54% of the plants inoculated. The ultrastructure of these nodules was studied in detail by light and electron microscopy. The nodules were devoid of internal bacteria, possessed central vascular tissue (unlike the lateral vascular tissue of a normal nodule), and exhibited localized cell death of epidermal cells. Study of the cell surface polysaccharides of strain JS314 revealed that the exopolysaccharide of this strain was identical to that of the wild type. However, the lipopolysaccharide (LPS) of strain JS314 showed gross differences from that isolated from the wild-type strain. Specifically, the LPS of strain JS314 appeared to lack the high molecular weight LPS I form, strongly suggesting that the LPS lacks the O-chain. Glycosyl-composition analysis showed that the LPS of mutant JS314 lacked 2,3-di-O-methylrhamnose, 3-O-methylrhamnose, fucose, and quinovosamine. These results indicate that LPS I in B. japonicum is essential for bacterial infection of soybean, but is not required to initiate plant cortical cell division, an early plant response to infection.  相似文献   
66.
67.
Plants have evolved highly sensitive sensory photoreceptor systems to regulate various aspects of their growth and development. Many responses such as seed germination, flowering and dormancy are controlled by red and far-red regions of the solar spectrum through the phytochrome family of photoreceptors. However, several other responses such as stem growth inhibition, phototropism and opening of stomata are controlled by blue and/or ultraviolet light absorbing photoreceptors called cryptochromes and phototropin. Despite their central role in plant biology, the mode of action of these photoreceptors has been shrouded in mystery. Even the biochemical isolation of a photoreceptor, as in the case of phytochrome was accomplished decades ago, did not help in elucidating the mechanism of action. Nevertheless, due to advances in recombinant DNA technology, generation of extensive databanks and the capability to predict function by base sequence analysis, a breakthrough has now come about. It is clear that certain phytochromes, at least in the cyanobacteria and algae which represent the simplest plants, are hybrid photoreceptor-cum-kinases. These novel kinases utilize captured photons rather than conventional ligands to trigger conformational change and in consequence enzyme activity. The kinases apparently, then, cause phosphorylation of many other types of target molecules, leading eventually to various developmental changes. There is suggestive evidence that in higher plants, too, at least some phytochromes may operate as kinases. As compared to work on phytochromes, the blue light photoreceptors have begun to be studied only recently. However, the exciting discovery has been made of at least one photoactive kinase that is critically required for phototropism. This article summarizes the above discoveries from the perspective of general biology. Dedicated to the memory of Drs Harry Borthwick, Sterling Hendricks and James Bonner whose classical studies paved the way for modern researches on mechanism of action of plant photoreceptors and whom the senior author was previleged to know.  相似文献   
68.
Molecular evolution of a multigene family in group A streptococci   总被引:15,自引:0,他引:15  
The emm genes are members of a gene family in group A streptococci (GAS) that encode for antiphagocytic cell-surface proteins and/or immunoglobulin-binding proteins. Previously sequenced genes in this family have been named "emm," "fcrA," "enn," "arp," "protH," and "mrp"; herein they will be referred to as the "emm gene family." The genes in the emm family are located in a cluster occupying 3-6 kb between the genes mry and scpA on the chromosome of Streptococcus pyogenes. Most GAS strains contain one to three tandemly arranged copies of emm-family genes in the cluster, but the alleles within the cluster vary among different strains. Phylogenetic analysis of the conserved sequences at the 3' end of these genes differentiates all known members of this family into four evolutionarily distinct emm subfamilies. As a starting point to analyze how the different subfamilies are related evolutionarily, the structure of the emm chromosomal region was mapped in a number of diverse GAS strains by using subfamily-specific primers in the polymerase chain reaction. Nine distinct chromosomal patterns of the genes in the emm gene cluster were found. These nine chromosomal patterns support a model for the evolution of the emm gene family in which gene duplication followed by sequence divergence resulted in the generation of four major-gene subfamilies in this locus.   相似文献   
69.
A novel protein kinase (BjCCaBPk) from etiolated Brassica juncea seedlings has been purified and partially characterized. The purified enzyme migrated on SDS/PAGE as a single band with an apparent molecular mass of 43 kDa. The optimum pH for the kinase activity was 8.0. It was stimulated more than sixfold by the protozoa Entamoeba histolytica calcium binding protein EhCaBP (10.5 nM) but not by calmodulin (CaM) when used at equimolar concentration. Moreover the kinase also did not bind CaM-Sepharose. There was neither inhibition of the kinase activity in the presence of W-7 (a CaM antagonist), KN-62 (a specific calcium/CaM kinase inhibitor) and anti-CaM Ig, nor any effect on BjCCaBPk activity of staurosporine (a protein kinase C inhibitor). Furthermore a CaM-kinase specific substrate, syntide-2, proved to be a poor substrate for the BjCCaBPk compared with histone III-S. The phosphorylation of histone III-S involved serine residues. Southern and Northern blot analysis showed the presence of EhCaBP homologues in Brassica. The data suggest that BjCCaBPk may be a novel protein kinase with an affinity towards a calcium binding protein like EhCaBP.  相似文献   
70.
Primary leaf development of Sorghum bicolor is a phytochrome-mediated response. Primary leaves are not produced in Sorghum seedlings even after 10 d of germination if grown in darkness. However, 5 min irradiation with white light or red light given to 5 d etiolated seedlings resulted in the formation of etiolated leaves. This effect of red light was reversed by far-red light. When calcium (3-5 mM) was added exogenously, complete leaf formation was obtained in darkness; however, the kinetics of the response was slower than that seen with light irradiation. This effect was also obtained with potassium ions but magnesium ions had no effect. Light- and calcium-mediated leaf development could be arrested at the stage of leaf emergence or leaf expansion by the addition of inhibitors of G-proteins or by calcium channel blockers suggesting a role of G-proteins and calcium in phytochrome signal transduction during primary leaf development.Key words: Leaf formation, G-proteins, calcium, potassium, Sorghum bicolor.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号